On the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines
نویسنده
چکیده
This paper proves convergence rates for local scattered data interpolation by polyharmonic splines. To this end, it is shown that the Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform scalings. Consequences of this important result for the numerical stability of the local interpolation scheme are discussed. A stable algorithm for the evaluation of polyharmonic spline interpolants is proposed.
منابع مشابه
Application of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کاملPolyharmonic spline interpolation on a semi-space lattice
We consider the problem of semi-cardinal interpolation for polyharmonic splines. For absolutely summable data sequences, we construct a solution to this problem using a Lagrange series representation. The corresponding Lagrange functions are deened using Fourier transforms and the technique of Wiener-Hopf factorizations for semi-space lattices.
متن کاملNumerical solution of functional integral equations by using B-splines
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.
متن کاملA Local Lagrange Interpolation Method Based on C Cubic Splines on Freudenthal Partitions
A trivariate Lagrange interpolation method based on C1 cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.
متن کاملA local Lagrange interpolation method based on C1 cubic splines on Freudenthal partitions
A trivariate Lagrange interpolation method based on C cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.
متن کامل